이 글에서는 PostgreSQL pgvector 기반 벡터 검색 시스템을 Airflow와 Kubernetes를 활용하여 자동화하는 방법을 다룹니다.특히, Airflow로 벡터 데이터를 자동 업데이트하고, Kubernetes CronJob & HPA(Auto Scaling)를 적용하여 운영을 최적화하는 실무적인 방법을 정리합니다. ✅ Airflow를 활용한 벡터 데이터 자동 업데이트 및 관리✅ Kubernetes CronJob을 활용한 주기적 벡터 데이터 백업 & 최적화✅ HPA(Auto Scaling) 적용으로 AI 검색 시스템의 자동 확장 🚀 1. Airflow를 활용한 벡터 데이터 자동 업데이트 🔹 1️⃣ Airflow를 활용하는 이유 ✅ AI 검색 시스템에서 벡터 데이터는 지속적으로 추가 & ..